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Abstract

The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and

threonine (T) (PEST) is a signal‐transducing agent providing unique features to its

substrate nuclear proteins (PEST‐NPs). The PEST motif is responsible for particular

posttranslational modifications (PTMs). These PTMs impart distinct properties to

PEST‐NPs that are responsible for their activation/inhibition, intracellular localiza-

tion, and stability/degradation. PEST‐NPs participate in cancer metabolism, im-

munity, and protein transcription as oncogenes or as tumor suppressors. Gene‐
based therapeutics are getting the attention of researchers because of their cell

specificity. PEST‐NPs are good targets to explore as cancer therapeutics. Insights

into PTMs of PEST‐NPs demonstrate that these proteins not only interact with each

other but also recruit other proteins to/from their active site to promote/inhibit

tumors. Thus, the role of PEST‐NPs in cancer biology is multivariate. It is hard to

obtain therapeutic objectives with single gene therapy. An especially designed

combination gene therapy might be a promising strategy in cancer treatment. This
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review highlights the multifaceted behavior of PEST‐NPs in cancer biology. We have

summarized a number of studies to address the influence of structure and PEST‐
mediated PTMs on activation, localization, stability, and protein–protein interactions

of PEST‐NPs. We also recommend researchers to adopt a pragmatic approach in

gene‐based cancer therapy.
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1 | INTRODUCTION

Nuclear proteins (NPs) are involved in cancer proliferation and in-

hibition. They play a vital role by regulating the cell cycle (Hydbring,

Castell, & Larsson, 2017), stem cell generation (Ammirante et al.,

2013), exercise metabolism (Park et al., 2009), immune response

(S. R. Ho, Mahanic, Lee, & Lin, 2014) and DNA damage and repair

(Bakhanashvili et al., 2008; Nithipongvanitch et al., 2007). These

different cellular activities are regulated by posttranslational mod-

ifications (PTMs) of proteins. The NPs are modified by phosphor-

ylation, ubiquitin conjugation (S. R. Ho et al., 2014), SUMOylation

(Nie, Moser, Nakamura, & Boddy, 2017), PARsylation (Zhou, Chan,

Xiao, & Tan, 2011) and so on. The NPs exhibit various molecular and

biological effects through different modifications based on different

expression levels at target sites. For example, nuclear protein p53 is a

tumor suppressor in normal conditions but at increasing concentra-

tions, mutant p53 acts as a tumor promoter. Similarly, a ring finger

protein 144A (RNF144A; Ho et al., 2014), with a wide cellular dis-

tribution mainly around the plasma membrane and the perinuclear

area, is produced as a result of DNA damage in response to p53

activation. It interacts with DNA dependent protein kinases and performs

as a ubiquitin E3 ligase to degrade p53 while it undergoes auto‐
ubiquitination when overexpressed. Some NPs such as XRCC1, KU70,

DNA ligase III, and PARP1 degrade through PAR‐dependent modification

(Kang et al., 2011). The PTMs mediate several other physiological

processes of NPs; for example, ubiquitination governs the stability of

PCNP, translocation of p53, and stimulation/inhibition of MeCP2.

1.1 | Proline (P), glutamic acid (E), serine (S), and
threonine (T) sequence enriched nuclear proteins
(PEST‐NPs)

Among the NPs, PEST sequence enriched nuclear proteins (PEST‐
NPs) are abundant, widely distributed, and involved in various cell

biological and physiological functions. The PEST‐NPs are known as

guardians of the cell and interfere in several pathways such as the

ubiquitin proteasome pathway, glycosylation of nuclear pores, and

the hexosamine biosynthetic pathway (Afzal et al., 2019). These

proteins are involved in nutrient regulation of cellular metabolism

and physiology, nucleocytoplasmic transport, cell‐cycle regulation,

and cyclic nucleotide signaling pathways (Rogers, Wells, &

Rechsteiner, 1986). In cancer cell biology, some PEST‐NPs regulate

the tumor cell cycle either directly by binding with DNA or indirectly

by ubiquitinating the cyclins D1 and E1 hence inducing G1 arrest in

cancer cells. The involvement of PEST‐NPs in cell cycle arrest and cell

apoptosis is illustrated in Figure 1. The PEST‐NPs primarily regulate

cancer metabolism via the PI3K pathway, mTOR pathway, and

mitogen‐activated protein kinase (MAPK) pathway and the cancer‐
immune mechanism via apoptosis and autophagy, however; in-

tracellular localization and the protein level at the target site also

influence the type of biological function. The PTMs of PEST‐NP like

phosphorylation and ubiquitination regulate the intracellular locali-

zation, activation, and expression level of substrate proteins.

1.2 | PTMs are modulated by PEST motif

The PEST motif is a signal‐transducing agent mainly responsible

for degradation of its substrate either by proteasomal degradation

of proteins (Chakraborty et al., 2011), endocytosis of yeast α‐
factor receptor STE3 (Roth, Sullivan, & Davis, 1998), or lysosomal

degradation of the cell surface human calcium receptor (Zhuang,

Northup, & Ray, 2012). The carboxyl‐terminus of the PEST domain

undergoes phosphorylation and degrades the substrate proteins;

like IkBα and IKKβ are degraded by Ck2 phosphorylation (Perkins,

2006) and proteins involved in cyclic nucleotide action and me-

tabolism are degraded by cAMP‐dependent protein kinase (Sekhar

& Freeman, 1998). Other than phosphorylation, the proteins with

the PEST motif such as PCNP and MeCP2 are highly subjected to

ubiquitination (Bellini et al., 2014), Bcl6 modifies by P300 acet-

ylation (Bereshchenko, Gu, & Dalla‐Favera, 2002) and IKKβ de-

grades by non‐lysosomal cysteine protease (µ‐calpain)–mediated

degradation (J. F. Zhao, Shyue, & Lee, 2016). The modification of serine

1188 of the PEST sequence of vascular endothelial growth factor

receptor‐2 (VEGFR‐2) mediates both stability and MAPK mediated acti-

vation of this receptor (R. Liu et al., 2017). Owing to PEST‐regulated
proteasomal degradation, PEST‐NPs are short‐lived and maintain their

cellular levels with the help of ubiquitin‐conjugating and ligase enzymes in

normal conditions as shown in Figure 2.
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1.3 | PTMs of PEST‐NPs are responsible for their
activation/inhibition, stability/degradation, and/or
intracellular localization

The bio‐molecular alterations of proteins mediate transcription, in-

tracellular localization and/or degradation following two types of

genetic alterations that is, the oncogene activation or the loss of

tumor suppressor activity leading to carcinogenesis. The PTMs are

responsible for over‐supply or over‐activity of transcription factors

like Myc and NF‐κB followed by unrestrained growth and metastatic

behavior of several types of human cancer (Afzal et al., 2019; Afzal,

Sarfraz, Wu, Wang, & Sun, 2016). It is well understood that

SUMOylation by SUMO‐1 and SUMO‐2/‐3, mono‐ or poly‐
ubiquitination of PTEN regulate the activity, localization and/or

stability of PTEN (Lang et al., 2015; N. Li et al., 2015). Similarly, in the

case of NF‐κB, phosphorylation of the PEST motif and subsequent

F IGURE 1 Multifaceted behavior of PEST sequence enriched nuclear proteins (PEST‐NPs): p53 and PTEN are “tumor suppressors” and Bmi

and Myc are “tumor promotors” in the normal cancer microenvironment. MeCP2, PICT‐1, and PCNP are heterogeneous in the normal cancer
environment. Tumor suppressor activity of these nuclear proteins is regulated via CDK‐complex to interrupt the G2/M phase (cell cycle arrest)
or G1/the S phase (cell apoptosis). The cellular location (nucleus/cytoplasm), concentration, mutation, and stress conditions further define their

dominant role (either tumor suppressor or tumor promoter) in the cancer microenvironment via interfering with other oncogenes (Oncogenic
pathway) or transcription factors (Transcription pathway). PCNP (PEST‐containing nuclear protein) is a novel protein in the PEST‐NP class;
however, the underlying mechanism of the tumor suppressor/tumor promotor in the cancer microenvironment is not yet defined. ARF, adipose‐
riobosylation factor; BIM, Bcl‐2‐interacting mediator of cell death; BRCA‐1, breast cancer susceptibility gene 1; Cop‐1, constitutive
photomorphogenesis protein 1; E2F‐1, early‐region‐2 transcription‐factor‐1; FOXF1, forkhead box protein F1; GATA3, GATA binding protein 3;
HDAC, histone deacetylase; HIF‐1α, hypoxia‐inducible factor‐1α; hTERT, human telomerase reverse transcriptase; MDM2, murine double
minute 2; MYOD1, myogenic differentiation 1; NF‐κB, nuclear factor‐κB; Pirh‐2, p53‐induced protein with a RING‐H2 domain; Siha‐1, siah E3

ubiquitin‐protein ligase 1; Wip‐1, WASP‐interacting protein 1

F IGURE 2 Degradation of phosphorylated
substrates containing PEST sequences by a

complex of Cdc34/Ubc3 and SCF (Skp1, Cullin,
and F‐box protein). Cdc, cell division cycle;
PEST, proline (P), glutamic acid (E), serine (S),

and threonine (T); SCF, Skp1, cullin, and F‐box
protein; Ub, ubiquitin; Ubc, Ub‐conjugating
enzyme
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proteolytic degradation of the inhibitor of NF‐κB (IκB) kinase initiates

hetero‐dimerization leading to transcriptional activation and nuclear

localization of NF‐κB followed by DNA damage. In the case of PEST‐
NPs, PTMs are responsible for activation/inhibition, stability/de-

gradation and/or Intracellular localization.

1.3.1 | Activation/inhibition

Anticancer PEST‐NP, p53 executes apoptosis through mitochondrial

permeability. During stress conditions, the p53 upregulated mod-

ulator of apoptosis (PUMA) is released by nuclear p53 that interacts

with the cytoplasmic Bcl‐xl‐p53 complex of tumor suppressor protein

p53, setting it free from the complex to initiate mitochondria‐
dependent apoptosis in the cytoplasm. After executing apoptotic

effects, p53 degrades rapidly both in the nucleus and in the cyto-

plasm. The nuclear p53 conjugates with ubiquitin (p53‐Ub) and pas-

ses through the nuclear membrane into the cytoplasm where p53‐Ub
and cytoplasmic p53 degrade by ubiquitin ligase mouse double

minute 2 (MDM2), a phenomenon observed in many tumor types

(Chipuk, Bouchier‐Hayes, Kuwana, Newmeyer, & Green, 2005;

Lisachev, Pustylnyak, & Shtark, 2015).

1.3.2 | Stability/degradation

The modification of the PEST motif is not only responsible for the

activation/deactivation but also for the stability of PEST‐NPs.

The enzyme O‐GlcNAcylation transferase directly interacts with

the PEST‐containing transcription‐factor Bmi‐1 at serine 255 and

increases the stability and oncogenic activity of Bmi‐1 via inhibiting

p53, PTEN and CDKN1A/CDKN2A (Y. Li, Wang, et al., 2017).

Similarly, PTEN is ADP‐ribosylated by tankyrases and E3 ligase

RNF146 ubiquitinates the ribosylated‐PTEN and degrades PTEN

(N. Li et al., 2015).

1.3.3 | Intracellular localization

In addition to activation/inhibition and stability/degradation, the

PTMs of the PEST motif also regulate intracellular localization of

PEST‐NPs. Intracellular localization is important to execute a phar-

macological anticancer or carcinogenic response. These proteins are

transported by importins and exportins that identify the nuclear lo-

calization sequences (NLSs) and nuclear export sequences (NESs)

respectively, present on cargo proteins. Tumorigenesis relates to the

unbalanced nucleocytoplasmic shuttling of cargo proteins. The nu-

clear localization of p53 executes a DNA damage effect while cyto-

plasmic p53 executes an apoptotic effect. However, cytoplasmic p53

is entrapped by antiapoptotic protein Bcl‐xl. The entrapped‐p53
cannot initiate the mitochondrial membrane to execute anticancer

effects until PUMA liberates the sequestered‐p53 protein. Many

transporter inhibitors are under investigation for their anticancer

effects such as withacnistin inhibits nuclear localization of signal

transducer and activator of transcription 3 (STAT3) and suppresses

antiapoptotic proteins (X. Zhang, Blaskovich, Forinash, &

Sebti, 2014). Hence, the PEST motif contributes to the diverse fea-

tures of nuclear proteins, leading to multifarious molecular and

physiological roles of PEST‐NPs.

2 | MULTIFACETED BEHAVIOR OF
PEST‐NPs

In this review, we have summarized the impact of PTMs of PEST‐NPs

on their activation/inhibition, stability/degradation, and intracellular

localization to execute the tumor‐promoting or tumor‐suppressive
response. This review mainly addresses the multifaceted behavior of

PEST‐NPs in cancer biology by highlighting protein–protein interac-

tions at the molecular level. Among various NPs, some important

PEST‐NPs such as p53, PTEN, Bmi‐1, Myc, MeCP2, GLTSCR2, and

PCNP have been discussed individually as model PEST‐NPs. The

structure of a protein defines its origin, mechanism of function, and

fate. Moreover, the “PEST score,” calculated by the computer‐aided
program “PEST‐Find,” defines the genuine PEST domain with a pro-

teolytic signal. Here, the structural comparison of these proteins is

given in Table 1. However, some of their important functions in

cancer metabolism and transcription are summarized in Tables 2

and 3, respectively.

2.1 | p53

The human p53 is one of the most important tumor suppressor

proteins. It is famous as the “guardian” of the genomes playing a vital

role in controlling the fundamental processes of the hallmarks of

cancer. The human p53 protein consists of 393 amino acids, starting

from the amino acid 1 of the amino‐terminal to amino acid 393 of the

carboxyl‐terminal. The N terminal is composed of five repeats of

Proline‐XX‐Proline sequences (X is the amino acid, which varies from

species to species of p53) and several phosphorylation sites (from 62

to 94 amino acids). The proline‐rich area called the transactivation

domain (TAD) is important for transcriptional activation of the pro-

tein. The TAD is divided into two parts, TAD1 (residues 1–39) and

TAD2 (residues, 40–61). Although TAD1 is generally sufficient to

execute p53‐dependent cell cycle arrest and apoptosis in response to

acute DNA damage, each TAD can induce senescence and suppres-

sion of tumor initiation in response to oncogenic signaling. The N

terminal in general and TAD2, in particular, interacts with the DNA‐
binding domain at or near the DNA‐binding surface of the host cell,

and thus blocks the DNA binding (Miller Jenkins et al., 2015;

Walker & Levine, 1996). The DNA‐binding domains regulate the

nuclear and cytoplasmic functions of p53 (Follis et al., 2014). The

affinity and specificity of DNA‐binding sites mediate competitive

inhibition between binding domains (F. He et al., 2019). The phos-

phorylation sites at 22 and 23 amino acids are responsible for the
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degradation of p53. The p53 ubiquitin ligase MDM2 interacts with

TAD1 (amino acids 22 and 23) and suppresses tumor activity (Lin,

Chen, Elenbaas, & Levine, 1994; Walker & Levine, 1996). It has been

reviewed that approximately 80% of the mutations found in the p53

gene occur in the proline‐rich region of p53 (Bouaoun et al., 2016).

The DNA damage, metabolic variations, telomere corrosion, hy-

poxia, mitotic spindle malfunction, deficits in ribosomal biogenesis,

and the mutational activation of other oncogenes such as Myc, Ets,

and Ras trigger transcription of p53. The type of acetylation, me-

thylation, and phosphorylation (PTM) specifies p53 associated cel-

lular activities such as apoptosis, cellular senescence, differentiation,

cell cycle regulation, ferroptosis, cellular repair mechanisms, autop-

hagy, extrinsic signaling and metabolic mutation. Physiological con-

ditions and types of cells are additional factors that further define

the cellular activities of p53.

The p53 protein maintains a required level in normal cells, as it is

a potent inducer of apoptosis. In normal circumstances, the level of

p53 protein in the cell is very low due to a short half‐life of about

620min. In response to a variety of stress conditions, the p53 level is

stabilized through different PTMs, which often regulate p53 binding

with its natural destructor human double minute 2 (HDM2) and

create multiple feedback loops. The transcription and oncogenic

properties of p53 interplay between protein expression, while

MDM2 and ADP‐ribosylation factor p14 (p14ARF) are the chief

players in p53 stability, where MDM2 degrades the p53 by protea-

somal degradation (Lahav et al., 2004) while p14ARF inhibits MDM2

and increases p53 levels (Brown, 2009). Similarly, the stress‐
responsive kinase p38 MAPK, which phosphorylates p53 at serine 33

and serine 46, also contributes to p53 stabilization and activation. In

contrast, the activated p53 induces Wip‐1 phosphatase that facil-

itates a negative regulatory feedback on p38 MAPK/p53 signaling

(Stramucci, Pranteda, & Bossi, 2018).

The protein p53 mediates cytoplasmic and nucleoplasmic re-

sponses upon active accumulation in the respective regions. Cyto-

plasmic accumulation induces mitochondrial permeability and

apoptosis while nuclear localization initiates DNA damage response

or transcription of target proteins. The nucleo‐cytoplasmic shuttling

is a strictly regulated process and slight mutations can abruptly

disturb the normal processes. The nuclear export of p53 is mediated

by PTMs such as phosphorylation at threonine 155 mediates nuclear

export (E. W. Lee, Oh, Song, & Kim, 2017), phosphorylation at serine

392 mediates mitochondrial localization (Castrogiovanni, Water-

schoot, De Backer, & Dumont, 2018) while a kinase inhibitor inhibits

nuclear export. Acetylation at lysine is another modification of p53

that induces activation, nuclear localization and DNA binding of p53

protein (Ai et al., 2016).

2.2 | PTEN

PTEN is a tumor suppressor nuclear protein, which is first found in

glioblastoma cell lines and xenografts, prostate cancer cell lines, and

breast cancer cell lines and xenografts in the mutant form (J. Li

et al., 1997). The PEST‐NP PTEN, also called MMACI/TEP1 consists

of 9 exons, 1,212 nucleotides and 403 amino acids with 47 kDa

molecular mass (Haddadi et al., 2018; D. M. Li & Sun, 1997; Steck

et al., 1997). The two domains, N‐terminal phosphatase and

C‐terminal with a small N‐terminal tail constitute the major portion

of the protein. The C‐terminal region consists of the lipid‐binding
domain called the PDZ‐binding C2 domain that confers the affinity

for the phospholipid membrane and is essential for the right place-

ment of PTEN at the plasma membrane. It also consists of two PEST

sequences, which are responsible for its tumor‐suppressive activity

(Georgescu, Kirsch, Akagi, Shishido, & Hanafusa, 1999; Myers

et al., 1998). The tail of the C‐terminal comprises about 50 amino

acids that are responsible for active phosphorylation. Lipid‐
phosphatase activity is mainly responsible for the antitumor function

of PTEN. The suppression of the enzymatic activity of PTEN illus-

trates the loss of function. The phosphatase activity correlates with

gene expression and invasion. The PEST region of PTEN is not only

responsible for proteasomal degradation of protein by ubiquitination

but also correlates with improved stability of the protein and its

TABLE 1 Structural differences of PEST sequence enriched nuclear proteins (PEST‐NPs)

Proteins PEST score Number of amino acids
Chromosome
number

Number of
transcript Cytoband Chromosome location (bp)

p53 ‐3.7–1.7 393 17 25 p13.1 7661779–7687550

Bmi‐1 n.d.a 326 10 4 p12.2 22321211–22331484

PTEN 19.41–20.49 403 10 2 q23.31 87863113–87971930

Myc 2.3–11.8 439 8 9 q24.21 127735434–127741434

MeCP2 n.d.a MECP2_e1(498) and

MeCP2‐e2(486)
Xq28 10 q28 154021573–154137103

PCNP n.d.a 178 3 3 q12.3 101574095–101594437

GLTSCR2 7.23 478 19 5 q13.33 47745522–47757058

Abbreviations: GLTSCR2, glioma tumor suppressor candidate region gene 2; PCNP, PEST‐containing nuclear protein; PEST, proline (P), glutamic acid (E),

serine (S) and threonine (T); PTEN, phosphatase and tensin homolog.
an.d., no data available.
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deletion decreases the expression of the PTEN protein considerably.

The ubiquitination regulates the degradation, nuclear import, and

tumor‐suppressive activity of PTEN (Trotman et al., 2007). Mono‐
ubiquitination at lysine 13 and/or lysine 289 is responsible for nu-

clear import of PTEN. However, upon nuclear localization, PTEN‐Ub
deubiquitinates and antagonizes the mammalian target of rapamycin

(mTOR) pathway. PTEN also antagonizes the mTOR pathway in the

cytoplasm only if it is not ubiquitinated. Otherwise, polyubiquitina-

tion readily degrades cytoplasmic PTEN by proteasomal degradation.

Although PTEN is the second most effective tumor suppressor

protein, its tumor‐promoting effects are also observed (Ma

et al., 2019; Mukherjee et al., 2018). PTEN nuclear localization

through NLS is responsible for increased cell viability in endometrial

adenocarcinoma Ishikawa cells (Mukherjee et al., 2018). Nuclear

PTEN encourages DNA repair and chromosomal stability (J. O. Lee

et al., 1999; Tibarewal et al., 2012; J. Zhang et al., 2019). Another

study (J. Zhang et al., 2019) demonstrates that dimethylation of

PTEN recruits PTEN to DNA‐damage sites where it mediates effi-

cient repair of DNA double‐stranded bands via dephosphorylation.

In addition to phosphorylation and ubiquitination, SUMOylation

also regulates the activity and localization of PTEN. PTEN‐
SUMOylation regulates its nuclear retention, which is sensitive to

genotoxic stress (Bassi et al., 2013). SUMOylation of PTEN not only

increases nuclear retention but also positively correlates with the

DNA damage response. The loss of SUMO‐PTEN is responsible for

the loss of the DNA damage response. PTEN‐mediated DNA damage

response is a major cause of poor prognosis under radiotherapy.

2.3 | Bmi‐1

A polycomb group (PcG) protein, Bmi‐1 plays a pivotal role in epi-

genetic regulation of various cellular processes such as proliferation,

differentiation, self‐renewal of stem cells, and chemoresistance to

different anticancer drugs. The PEST‐NP Bmi‐1 encodes 326 amino

acids with a molecular weight of 44–46 kDa. The polycomb group

protein PRC1 commonly known as Bmi‐1 consists of two domains,

one of which is Bmi‐1 that covers the Ring1b while the tail of Ring1b

wraps around the Bmi‐1. The oncogene Bmi‐1 attaches to the sub-

strate protein and ubiquitinates the lysine of the substrate protein by

E3 ligase Ring1b (Alkema, Wiegant, Raap, Berns, & van Lohuizen,

1993; Z. Li et al., 2006). For example, Bmi‐1 ubiquitinates p53 via

RNF2/Ring1b and decreases the stability of p53 (Calao et al., 2013;

W. J. Su et al., 2013). The protein Bmi‐1 also contains two NLSs, NLS1

and NLS2 that are responsible for nuclear localization of Bmi‐1.
Among these signals, NLS2 plays an essential role in the nuclear

localization of Bmi‐1 (Alkema et al., 1993). According to functions,

Bmi‐1 is divided into three portions or regions: a conserved ring

domain at the N terminal, a central helix‐turn‐helix (HTH) domain

and a carboxyl‐terminal containing a PEST‐like domain (Aikema,

Wiegant, Raap, Berns, & Lohuizen, 1993; Alkema et al., 1993; Z. Li

et al., 2006). In response to DNA damage, the ring domain of Bmi‐1

concentrates on DNA strand breaks and together with HTH avoids

senescence in cells (Ginjala et al., 2011; Itahana et al., 2003). Thus, it

increases the replicative lifetime and accumulation of cells at the

G2/M phase, hence increasing the proliferation of cells (Yadav

et al., 2010). The Bmi‐1 also increases the survival time of the tumor

cell through Myc‐N‐activation.
The oncogenic function of Bmi‐1 is evident as it inhibits the

transcription of tumor suppressors such as p16, p19, p53 and PTEN

(Jacobs et al., 1999; Song et al., 2009; Yadav et al., 2010). The protein

Bmi‐1 is upregulated in a variety of cancer types, including lympho-

mas, prostate cancer, non‐small‐cell lung cancer (NSCLC), colon

cancer, breast cancer, and nasopharyngeal carcinoma. This upregu-

lation of Bmi‐1 in prostate cancer, NSCLC, and colon cancer occurs

concurrently with downregulation of INK4A (also called p16) and

ARF. During the development process, Bmi‐1 plays a critical role in

the self‐renewal of neural stem cells and intestinal stem cells through

inhibition of the p21CIP1 gene and INK4A/ARF locus respectively

(Fasano et al., 2007). The upregulation of cyclin E contributes to the

Bmi‐1‐mediated progression of neuroblastoma (Mao et al., 2013).

Bmi‐1 also enhances telomerase activity in mammary epithelial cells

and prostate cancer cells (Dimri et al., 2002; Ismail et al., 2012). The

PTMs of Bmi‐1 at different serines regulate both INK4A/ARF‐
dependent and INK4A/ARF‐independent functions of Bmi‐1
(Voncken et al., 2005). The phosphorylation of Bmi‐1 by AKT sti-

mulates glioma and hepatic carcinogenesis through an INK4A/ARF‐
independent pathway (Bruggeman et al., 2007; Xu et al., 2009) and

suppresses tumor growth through an INK4A/ARF‐dependent path-

way (Y. Liu et al., 2012). The modification of Bmi‐1 by AKT kinase

affects its oncogenic properties depending on the type of residual

substrate (Y. Liu et al., 2012). Bmi‐1 also phosphorylates by MAPK

activated protein kinase 3 (MAPKAPK3). The activation or over-

expression of MAPKAPK3 phosphorylates Bmi‐1 and other polycomb

proteins and subsequently recruits substrate proteins from chroma-

tin, activates transcription of the INKA4/ARF locus; and hence pro-

motes apoptosis (Cui et al., 2007; Sahasrabuddhe, Dimri, Bommi, &

Dimri, 2011).

A large number of transcriptional and posttranscriptional reg-

ulators modulate Bmi‐1 expression such as Myc‐N, Myc‐C, specific
protein 1 (Sp1), Twist related protein 1 (Twist1), forkhead box pro-

tein M1 (FOXM1), E2F‐1 and Sal‐like protein 4 (SALL4) regulate the

expression of Bmi‐1 positively. While, Kruppel‐like factor 4 (KLF4),

Mel‐18, and histone deacetylase inhibitors (HDACi) suppress Bmi‐1
at the transcriptional level. The Notch and Wnt pathways also reg-

ulate the expression of Bmi‐1 (Erika et al., 2015). The mRNA and

protein levels of Bmi‐1 are upregulated in PTEN‐null prostate cancer,

while the loss of Bmi‐1 attenuates the oncogenic progression in

PTEN‐null prostate cancer. The ubiquitination breaks down Bmi‐1.
The protein Bmi‐1 is ubiquitinated at tyrosine 18 of ring finger by

ubiquitin ligase β‐transducing repeat‐containing protein (βTrCP) into

proteasomes. In MCF10A cells, the overexpression of βTrCP in-

creases the degradation of Bmi‐1 and vice versa (Sahasrabuddhe

et al., 2011; J. Zhang & Sarge, 2009).
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2.4 | Myc

The PEST‐NP Myc is probably the most prominent resident nuclear

transcription factor that dimerizes with MAX to mediate various

biological processes that influence normal cell growth and pro-

liferation. However, when deregulated, Myc becomes an oncogene

and transforms cells into malignant cells in concert with other ge-

netic alterations including loss of tumor suppressor checkpoints.

According to functions, Myc proteins consist of a large unstructured

amino‐terminal region with conserved boxes known as Myc boxes

(MBI and MBII), which are involved in transcriptional activation. The

middle segment of Myc proteins is composed of PEST sequences that

are responsible for ubiquitination, two conserved Myc boxes (MBIII

and MBIV), and one NLS for nuclear accumulation. The carboxyl‐
terminal region constitutes the basic helix‐loop‐helix leucine zipper

(bHLHZ) domain of one hundred amino acids, which is essential for

DNA–protein interaction initiating transcription (Adhikary & Eilers,

2005; Conacci‐Sorrell, McFerrin, & Eisenman, 2014).

The protein Myc is generally overexpressed in human cancer

cells. The vital downstream outcomes of Myc are protein translation,

cell cycle progression, and differentiation, tumor metabolism, and

ribosome biogenesis. It coordinates with a wide range of biological

functions, such as cell differentiation, cell survival, immune surveil-

lance, apoptosis, and cell proliferation. The Myc‐associated cell cycle

defects arise after enzymatic activation of Myc by SYMOylation

(Kessler et al., 2012). The SUMOylation of Myc by E3 ligase, the

protein inhibitor of activated STAT (PIAS‐1) not only increases half‐
life by preventing its proteasomal degradation but also positively

regulates the transcriptional activity of Myc. It is observed that Myc

activates transcription of the WW domain‐containing E3 ubiquitin‐
protein ligase 1 (WWP1), which poly‐ubiquitinates PTEN at serine

27, thus inhibiting PTEN dimerization and membrane recruitment

leading to degradation of PTEN and loss of PTEN‐mediated tumor‐
suppressive activity (Y. R. Lee et al., 2019). The pharmacological in-

hibition of PI3K/AKT/mTOR pathway (Suter & Marcum, 2007) dis-

tinctly decreases the Myc level and reveals significant therapeutic

value in Myc–driven cancers like small‐cell lung carcinoma, breast

cancer, hematopoietic cancer, and neuroblastoma.

The posttranslational phosphorylation and isomerization to-

gether are responsible for the nuclear localization of the Myc protein.

The serine 62 phosphorylated‐Myc accumulates at the nuclear pore

followed by proline 63 isomerization of serine 62 phosphorylated‐
Myc in the presence of phosphorylation‐dependent prolyl isomerase.

This isomerization promotes internalization of Myc from the nuclear

pore to the nuclear complex via mitogen‐induced MYC–MAX–GCN5

pathway. The specific nuclear localization regulates resident genes

according to external stimuli (Y. Su et al., 2018). Another study de-

monstrates that Myc accumulates at the nucleolus after threonine 58

phosphorylation where it ubiquitinates and degrades by FBW7, a

component of an SCF‐class ubiquitin ligase (E3) complex (Welcker,

Orian, Grim, Eisenman, & Clurman, 2004). The SUMOylation is an-

other way to regulate the stability of Myc by proteasome degrada-

tion, upon deSUMOylation by deSUMOylating enzyme; it promotes

mono‐ubiquitination and phosphorylation at serine 62 and threonine

58, thus regulating activity and expression of Myc (Sun et al., 2018).

The reverse transcriptase catalytic subunit (TERT) regulates and

stabilizes Myc expression at chromatin by ubiquitination, hence

contributing to activation or suppression of the target gene (Koh

et al., 2015). In addition to nuclear degradation, Myc degrades in the

cytoplasm by calcium‐dependent proteases (calpain) into C and N

terminals (Conacci‐Sorrell & Eisenman, 2011).

2.5 | MeCP2

The protein MeCP2 is another nuclear protein where PEST‐Find detects

the presence of the PEST motif. The methyl‐CpG binding protein 2

(MeCP2) is a 43 kDa protein with an ability to bind with DNA (Lewis

et al., 1992; Meehan, Lewis, & Bird, 1992). It consists of two functional

halves; the N‐terminal portion mainly constitutes DNA‐binding domains

called the methyl‐CpG‐binding domain (MBD). The C‐terminal of pro-

tein harbors at least two independent DNA‐binding domains and con-

stitutes a chromatin specific binding domain that is mainly responsible

for regulating nucleosomal array compaction and oligomerization

(Ghosh et al., 2010; Ho et al., 2008). It contains the transcriptional

repression domain. This region also consists of protein–protein inter-

acting regions such as a dimerizing domain (Becker et al., 2013) and a

WW domain‐binding region (WDR; Buschdorf & Stratling, 2004). The

protein MeCP2 also possesses one NLS (Nan, Tate, Li, & Bird, 1996) and

two PEST sequences in the C‐terminal with a strong positive PEST score

as mentioned in Table 1 (Thambirajah, Eubanks, & Ausio, 2009). The

phosphorylation of the PEST sequence at serine sequentially undergoes

ubiquitination of the neighboring lysine leading to rapid proteasomal

degradation of MeCP2. The PEST sequences and their phosphorylation

are involved in protein turnover, hence responsible for maintaining an

adequate level of MeCP2 within the nucleus.

The PEST‐NP MeCP2 regulates cell development by mediating

transcriptional activity as well as epigenetic activity. MeCP2 together

with its MBD domains binds with the hydrophilic surface of methy-

lated DNA to repress the transcriptional activity of DNA. The dif-

ferential phosphorylation of MeCP2 is a key mechanism by which the

MBD modulates its affinity for its partners. In response to stimuli,

MeCP2 recruits other corepressors, such as HDAC and Sin3A, to the

promoter site to mediate the hindrance to the expression of brain‐
derived neurotrophic factor (BDNF) and CDK15 (Bellini et al., 2014;

Ho et al., 2008). On the other hand, it recruits transcriptional acti-

vator CREB1 at the promoter site of an activated target to activate

BDNF promotion; hence transcriptional activation (Chahrour

et al., 2008). The protein MeCP2 inhibits FOXF1 and MYOD1 tran-

scription by binding with their promoters (L. Zhao et al., 2017).

FOXFI is not only a potent tumor suppressor for breast cancer,

gastric cancer, lung cancer, and esophageal carcinoma but also a

member of the transcription family that regulates cell proliferation,

differentiation, tissue repair, and embryo early development. It also

promotes the growth of gastric cancer cells by suppressing miR‐338‐
mediated antiproliferative effects (Tong et al., 2016).
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The normal functioning of neuronal cells is another important

function of MeCP2 (Amir et al., 1999). The disruption of MeCP2

functions in mouse and human neurons decreases ribosomal RNA

(rRNA) and cell size that demonstrate poor cell health. It is an effi-

cient gene that regulates the expression of other genes. It binds with

methylated‐ and hydroxyl methylated‐cytosine adenosine nucleo-

tides of DNA with strong affinity and regulates expression of the

largely distributed long gene in brain cells (Gabel et al., 2015). The

neuronal activation stimulates calcium‐dependent phosphorylation of

MeCP2 with concomitant release of the methyl‐binding protein

from BDNF promoter III, thereby facilitating transcription (Bellini

et al., 2014).

The PTMs of MeCP2 are likely to affect the binding of MeCP2

with DNA and protein partners and therefore contribute to the

versatility of MeCP2. In spite of having a constitutive NLS, the strong

affinity of MBD for DNA is sufficient for nuclear retention of MeCP2.

The SUMOylation of MeCP2 at lysine 412 by the E3 ligase PIAS‐1
degrades it into N and C terminals. However, the N terminal together

with its MBD retains its activity of DNA binding while the C terminal

loses its activity. The phosphorylation at serine 421 and threonine

308 also facilitates MeCP2 SUMOylation (Tai et al., 2016).

MeCP2S80 is the most abundant phosphorylated‐residue during

resting conditions and neuronal activity induces its depho-

sphorylation. Serine 80 phosphorylation does not affect the overall

subcellular localization of MeCP2 but seems to increase its affinity

for chromatin (Bellini et al., 2014).

2.6 | GLTSCR2

The glioma tumor suppressor candidate region gene 2 protein,

GLTSCR2, also known as protein interacting with carboxy terminus 1

(PICT‐1), is a 60 kDa protein located at chromosome 19q13 with 478

amino acids. The PEST‐NP GLTSCR2 shares its homology with the

yeast 60S ribosomal protein. There is a putative PEST sequence with

a score of +7.23 in GLTSCR2, which is functionally associated

with ribosomal RNA processing (Kalt, Borodianskiy‐Shteinberg,
Schachor, & Sarid, 2010). The protein GLTSCR2 contains six NLS

motifs along with extraordinary long sequences enriched with several

arginine and lysine clusters sharing functional similarity with nu-

cleolar localization signals (NoLSs).

The phosphorylation by c‐Jun NH2‐terminal kinases (JNK) and

poly‐ubiquitination mediate the stability of GLTSCR2. Under stress

conditions like DNA damage, GLTSCR2 localizes and aggregates to

the nucleolus near ribosomal DNA via JNK phosphorylation (Kalt,

Levy, Borodianskiy‐Shteinberg, & Sarid, 2012; S. Lee, Cho, Kim, &

Park, 2016) where it releases ribosomal proteins like fibrillarin. The

ribosomal proteins are important to regulate the cell cycle, tumor-

igenesis, viral replication, senescence and stress response.

The antitumor effects of GLTSCR2 are dependent on the PTEN

pathway. It exerts antitumor effects either directly interacting with

the carboxyl‐terminal of the tumor suppressor PTEN and promoting

PTEN phosphorylation, therefore inhibiting AKT pathway or

indirectly by increasing the stability of PTEN (Okahara, Ikawa,

Kanaho, & Maehama, 2004). The phosphorylation of the carboxyl‐
terminal of GLTSCR2 inhibits phosphatase activity and subsequent

recruitment of PTEN to the plasma membrane, both of which are

essential for antitumor functions of PTEN. On the other hand,

phosphorylation of the carboxyl‐terminal of GLTSCR2 is also im-

portant to maintain the cellular level of PTEN (Okahara et al., 2004).

It is important to know that GLTSCR2 downregulation promotes the

tumorigenic transformation of cells and this impaired GLTSCR2 ex-

pression is associated with PTEN downregulation in human neuro-

blastoma. The putative tumor suppressor gene GLTSCR2 induces

PTEN‐modulated cell death (Yim et al., 2007).

GLTSCR2 is mainly located at the nucleolus due to presence of

several NoLS while it also influences the localization of other pro-

teins. However, little is known about this localization mechanism.

Given that the NoLS motif must be present at the protein surface to

interact with the relevant partner bringing it to the nucleolus, the

efficacy of each NoLS in the context of the full‐length protein may

depend on posttranslational events. In other words, multiple NoLS

motifs may function to secure nucleolar localization of GLTSCR2 in

different conditions (Kalt et al., 2012; Okahara et al., 2006; Yim

et al., 2007). This protein assumes distinct protein confirmations

upon different PTM or protein–protein interactions. GLTSCR2 in-

teracts with the Bcl‐2 homolog (KS‐Bcl‐2) and selectively relocates

KS‐Bcl‐2 from the mitochondria to the nucleolus.

2.7 | PEST‐containing nuclear protein (PCNP)

PCNP is an under investigation member of the PEST‐NPs. Recent

research work explains that mRNA of PCNP is present in various

kinds of cancer cells like WI‐38 and TIG‐7 normal fibroblast cells,

HT‐1080 fibrosarcoma cells, and HepG2 hepatoma cells, signifying

that PCNP can be involved in various features of tumorigenesis

(Mori, Li, Hata, Ono, & Kochi, 2002). PCNP is a novel nuclear protein

consisting of 178 amino acids. It co‐localizes with a ring finger protein

NIRF in a homogenous manner in the peri‐nucleus area, the avoiding

nucleus (Mori et al., 2002). PCNP interacts with NIRF in vitro and in

vivo. NIRF contains the ubiquitin domain in the N‐terminus and the ring

finger catalytic domain in the C‐terminus, suggesting catalytic activity of

NIRF. The association of PCNP with NIRF in vitro and in vivo highlights

the ubiquitination of PCNP via NIRF, hence controlling the stability and

regulation of PCNP. A similar relationship exists between p53 and ring

finger protein MDM2. Moreover, the expression level of NIRF is higher

in various cancers (Alhosin et al., 2011).

Our previous studies describe that PCNP mediates the prolifera-

tion, migration, and invasion of human neuroblastoma, ovarian cancer

cells, and lung adenocarcinoma cells through MAPK and PI3K/AKT/

mTOR signaling pathways (Dong et al., 2020; Wang et al., 2019; Wu

et al., 2018). PCNP high levels reduce apoptosis via upregulating the

expression levels of phosphosignal transducers and activators of tran-

scription (STATs). It is also responsible for the immune response in

rheumatoid arthritis in a positive relationship with TNF‐α‐inducible
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protein 8‐like 2 (Shi‐Bai et al., 2017). PCNP actively executes apoptosis

by mediating caspase activities. However, the underlying mechanism of

inducing apoptosis is unknown. The induction of autophagy and apop-

tosis in different cell lines suggests the involvement of different nuclear

transporters in the dual behavior of PCNP. However, the nuclear

transportation of PCNP needs to be investigated (Afzal et al., 2019).

3 | CANCER GENE THERAPY

Worthwhile advances in technology have improved the diagnosis and

treatment plans for cancer with improving survival rates (Siegel,

Miller, & Jemal, 2018). However, the conventional methods are not

free from the risk of metastasis and/or long‐term adverse impacts on

nearly every organ system. Gene therapy (delivery of genetic mate-

rials e.g. gene, DNA, siRNA, and mRNA) is an intriguing and effective

approach to treat various diseases, of which 60% of the on‐going
clinical trials are related to cancer treatment (Wirth & Yla‐Herttuala,

2014). Gene delivery is based on novel approaches such as siRNA

delivery to block a critical pro‐growth pathway or delivery of a gene

coding for a proapoptotic inducer (Libutti, 2014). The tumor sup-

pressor proteins are lost in many human tumors as in the case of p53,

PTEN, and PCNP. Restoration of such types of tumor suppressor

genes may be a suitable approach. The tumor suppressor protein p53

has been widely explored as a gene therapeutic and is now in Phase

III clinical trials (Levine & Oren, 2009).

3.1 | Emerging role of gene therapy

It is important to understand the disease mechanism before starting

its treatment. Insights into tumorigenesis demonstrate that it is a

complex, multi‐gene, multi‐stage, and multi‐factorial disease. Cancer
development initiates upon imbalance between cell proliferation and

apoptosis, cell differentiation and inhibition, immunity and avoidance

of immunity, angiogenesis, and inhibition, as well as metastasis and

suppression of metastasis. However, cancer gene therapy is a simple

process involving the balance of oncogene and tumor suppressor

nuclear proteins.

3.1.1 | Gene therapy by restoring the expression of
tumor suppressor proteins

Maintaining the expression of the tumor suppressor gene at the

target site either by induction, increasing the stability, or intracellular

localization is a significant strategy in cancer therapy. The induction

of tumor suppressor PEST‐NPs like p53 or PTEN through viral and

nonviral vectors is an emerging field of cancer gene therapy. Induc-

tion of p53 through adenovirus is under clinical trials by the US‐FDA

while scientists are also interested in nonviral techniques like mi-

celles, liposomes, nanoparticles, and exosomes. Some recent at-

tempts in pursuit of efficient delivery of genetic material are listed in

Table 4. Inhibiting the PTM‐mediated proteasomal degradation of the

tumor suppressor gene also restores the expression level of tumor

suppressor proteins. For example, inhibition of p53 degradation by

an MDM2 ligase antagonist (Lisachev et al., 2015) such as roscovitine

(Lu, Chen, Peng, & Chen, 2001) and nutlin‐3 (T. He et al., 2018)

successfully restores the expression of p53. The antagonist of

MDM2, RG7112 demonstrates clinical activities in treating acute

myeloid leukemia and chronic lymphocytic leukemia (Andreeff

et al., 2016). Enhancing mitochondrial permeability by maintaining

cytoplasmic p53 expression level via PUMA‐mediated modification

of p53 is another strategy to restore P53 at the target site

TABLE 4 Gene delivery systems composed of PEST‐NPs

Gene

Loaded genetic

material Carrier systems Cell line

PTEN, TRAIL Protein Zein nanoparticles HepG2, HCC

mRNA PTEN Polymer‐lipid hybrid nanoparticles coated with a polyethylene

glycol shell

PC3‐luc

Protein Cationic lipidoids PC3

Plasmid Antioxidant nanoliposomes

Protein Silver nanoclusters was encapsulated within PEG coating U‐87 MG MCF‐7

p53 pDNA Chitosan‐sodium deoxycholate nanoparticles Human Caco‐2 cells

Magnetic nanoparticles U‐87

Polyethyleneimine‐modified calcium carbonate nanoparticles Hep3B, QSG‐7701, H1299,

293a and Hela cells

Monodisperse double‐walled microspheres N/A

Gold nanoparticles WI‐38, A549

Abbreviations: HCC, hepatocellular carcinoma; mRNA, messenger RNA; PEST‐NP, PEST containing nuclear protein; PTEN, phosphatase and tensin

homolog; TRAIL, TNF‐related apoptosis‐inducing ligand.

1668 | SARFRAZ ET AL.



(Kim et al., 2019). Restoration of the anticancer gene at the site of

action can be achieved also by regulating the localization of the gene

by controlling NLS‐/NES‐mediated transporters or PTM‐mediated

accumulation of the gene. Similarly, specific inhibition of transcrip-

tion factors like Bmi‐1, which inhibit the transcription of tumor

suppressors like p53 and PTEN, may also be fruitful.

3.1.2 | Gene therapy via inhibition of oncogene

On the other hand, to transform mutant PEST‐NPs into a wild‐type
form with normal functions and to inhibit the transcription or to

decrease the stability of oncogene are also important mechanisms in

cancer gene therapy. The metallochaperone stabilizes the DNA‐
binding protein domain and restores the ability of p53 to bind with

DNA. This drug is in preclinical trials (Yu et al., 2018). Inhibition of

cyclin‐dependent transcription of Myc via CDK7 or CDK9 inhibitors

such as THZ1 or PC585, respectively, substantially reduces Myc

expression and induces potent antitumor effects in Myc‐
overexpressing T‐cell acute lymphoblastic leukemia (Kwiatkowski

et al., 2014) and small cell lung cancers (Christensen et al., 2014). A

potential strategy to target the stability of Myc is by inhibiting the

kinases or deubiquitinases that stabilize Myc. Several deubiquiti-

nating enzymes are involved in Myc stabilization. The ubiquitin‐
specific protease 7 interacts with N‐Myc, induces deubiquitination

and subsequent stabilization of N‐Myc (Tavana et al., 2016). Phos-

phorylation in response to low levels of PI3K activity degrades

N‐Myc. (Otto et al., 2009).

3.1.3 | Gene therapy via immunity

To improve the balance between immunity and avoidance of im-

munity is a very important strategy in treatment of any disease

especially cancer. Hydroxychloroquine and vorinostat improve anti-

tumor immunity and inhibit autophagy in refractory colorectal cancer

patients (Patel et al., 2016). Similarly, dendritic cells induce a strong

adaptive immune response enough to generate a long‐lasting im-

munological memory against the tumor, enabling the host immunity

to prevent further relapses and metastasis (Lamberti et al., 2020).

Upregulation of proapoptotic proteins or inhibition of anti‐apoptotic
proteins by mediating PTMs is also an acceptable strategy. Scientists

might be interested in decreasing the immunity of cancer cells by

interrupting oncogenes‐mediated DNA damage response via PTMs.

3.2 | Limitations of gene therapy

To deliver genetic material into target cells/tissues and to express it

with the intention to obtain therapeutic effects is an important ad-

vancement in the field of cancer treatment. A big investment is being

made by the biotech companies on gene (DNA) based therapeutics in

the fight against cancer. PEST‐NPs like p53 and PTEN are promising

candidates in gene therapy because of their distinct role in onco-

genesis while other PEST‐NPs are good targets to be explored as

cancer therapeutics. However as discussed earlier, PEST‐NPs parti-

cipate in tumorigenesis as a tumor suppressor, oncogene, or tran-

scription factors as well as immune modulators leading to

protein–protein interactions.

3.2.1 | Protein–protein interactions

PEST‐NPs are easy targets for ubiquitination, phosphorylation, gly-

cosylation, methylation, and so on because of the PEST‐motif. These

PTMs are important for intracellular localization, activation/inhibi-

tion, and stability/degradation of PEST‐NPs (Chipuk et al., 2005;

Itkonen et al., 2013; H. B. Li, Tong, et al., 2017; Mori et al., 2002).

PEST‐NPs like MeCP2 and GLTSCR2 recruit other oncogenes to/

from their active sites and behave as a promoter or inhibitor of that

specific gene. The acetylation of MeCP2 at lysine 171 mediates its

interaction with at least two other chromatin remodeling enzymes

and may serve as a regulatory switch that can potentially modulate

protein–protein interactions (Pandey, Simmons, Malyarchuk,

Calhoun, & Pruitt, 2015). The PTMs of the PEST motif mediates the

bimolecular responses of PEST‐NPs. The PEST motif is a dual mod-

ulator of vascular endothelial growth factor receptor‐2 (VEGFR‐2);
its phosphorylation at serine 1188/serine 1191 mediates ubiquiti-

nation and subsequent degradation via β‐TRCP1, while its phos-

phorylation at tyrosine 1173 through PKA/p38 MAPK controls the

stability of VEGFR‐2 (Meyer et al., 2011). Some important

protein–protein interactions have been summarized in Table 5. So,

targeting the single gene as a cancer therapeutic is not as fruitful as is

supposed like kinase driver oncogenes (Nastiuk & Krolewski, 2016).

As a particular inhibitor cannot interrupt specific DNA binding with a

particular transcription factor (Darnell, 2002), similarly the ther-

apeutic effects of oncogene NPs generally and PEST‐NPs specifically

are uncertain in a large group of people owing to multiple functions

of PEST‐NPs. Not only the unprecedented effects of the target gene

but the heterogeneity of cancer and patient condition also limit the

efficacy of gene therapeutics.

3.2.2 | Gene delivery system

Pharma scientists are attempting to deliver the genetic material to

the site of action as shown in Table 4. The entrapment efficiency of

the carrier system and release of genetic material from the carrier

system are other limitations of cancer gene therapy in addition to

protein–protein interactions. It is obvious that until now US‐FDA has

not registered any tumor‐suppressing protein as a cancer therapeutic

and is awaiting critical Phase III clinical trials with Advexin. An ade-

novirus p53 gene therapy, gendicinan is the first‐ever tumor sup-

pressor gene therapy protocol approved by China FDA in 2004 for

clinical use in humans. However, more experimental and clinical trials

using well‐designed and effective doses of vectors are required to
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ensure the therapeutic efficacy of gene therapy for its clinical use

against a wide variety of cancers (Ajith, 2015).

4 | FUTURE PROSPECTS

Specially designed combination gene therapy based on a detailed

understanding of the underlying molecular mechanism of tumor-

igenesis may present a satisfactory approach. Managing the inter-

nalization and accumulation of tumor suppressors at its target site in

proliferating tumors is certainly conceivable. This intracellular com-

partmentalization can be achieved by (a) regulating nuclear transport

of the target gene via importins and exportins as in the case of p53

(Chipuk et al., 2005). (b) To control localization of proteins by med-

iating PTMs like ubiquitination, phosphorylation, and depho-

sphorylation is also a feasible strategy. The PTMs control (bA) in and

out of the protein, such as the proteasome inhibitors induce nuclear

localization of proteasome target proteins directly or indirectly (Khan

et al., 2018; Latonen, Moore, Bai, Jaamaa, & Laiho, 2011; Santiago‐
Josefat & Fernandez‐Salguero, 2003), for example, MG‐132 and

Lactacystin in acute myeloid leukemia (Matondo et al., 2017). (bB)

The regulation of PTMs is also important to control the stability of

the protein; as decreased ubiquitination by NEDD8 inhibitor in-

creases the stability of the protein, and in turn, increases mi-

tochondrial localization (G. Liu & Xirodimas, 2010) while COX‐2
inhibitors increase the stability of p53 and nuclear localization

(Swamy, Herzog, & Rao, 2003). Also, (bC) regulation of DNA binding

by PTMs is very important. For example, N‐terminal phosphorylation

and other PTMs regulate DNA‐binding affinity and specificity of p53

(Follis et al., 2014; F. He et al., 2019). A careful selection of gene

therapy in combination with transport inhibitors, kinase inhibitors

and posttranslational modification inhibitors (Abd‐Elhakim
et al., 2019) may be a good choice. The nuclear protein p53 de-

monstrates synergistic activation by stimulating actinomycin‐D ki-

nase and preventing upregulated‐MDM2 from binding to p53 by

nutlin‐3a in combination therapy (Zajkowicz, Gdowicz‐Klosok,
Krzesniak, Scieglinska, & Rusin, 2015). As PEST‐NPs show multi-

faceted behavior in tumorigenesis, a pragmatic approach is required

when employing these candidates as gene therapeutics.
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